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ABSTFMCT 

A procedure for the evaluation of heats of transition in scanning calorimetry 
has been developed. A formula for evaluation of the energy of fusion of a compound 
at its melting point is derived that takes into account the baseline shift that is attrib- 
utable to the heat capacity change on meltin g_ Several other calorimeter parameters 
of importance are discussed_ These include heat exchange between calorimeter 
vessel and jacket, the time constant of the instrument, ihe scanning rate, and the 
heater placement. 

I, IXiODUCTION 

Thermal analysis devices of various designs and constructions have been 
widely used for the determination of heats of trarxitiont-‘. Although the accuracy 
obtained in these devices has not as yet been as high as that obtained in carefuliy 
constructed adiabatic calorimeters ‘, they generally do have the advantage of ease of 
operation and they can yield rapid results on small amounts of material. 

Recently, this laboratory had the occasion to measure some heats of fusion 
using a thermal anaiysis metho 1’. One ambiguity we encountered, however, was in 
the treatment of the data-namely, in how to draw the baseline under the transition 
peak. The common and customary practice has &en simply to draw a straight line 
under the peak’. However, if there was a baseline shift, there was an uncertainty as 
to just how the baseline should be drawn. A search of the literature indicated that this 
problem had, with the exception of a few workers’“’ ‘, been ignored. 

In an effort to solve this proble,n and to Iay a theoretical foundation for this 
type of calorimetry, we have developed a one-body model treatment for phase transi- 
tion data obtained from scanning calorimetry. Our theory predicts that a correct 
tzeatment of the experimental data involves an extrapolation of the baseline obtained 
on completion of the transition and the application of a correction :erm involving 
tire scanning rate, the magnitude of the baseline shift, and the temperature difference 
and heat conduction constant between the calorimeter vessel and its jacket. 
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Il. THE IDF- HE%T COXDUCllOS CALORIMETER IX ?-HE SCANKING MODE 

The discussion and analysis of caIorime+ric methods frequently idealizes the 

separation of the calorimeter proper into two regions: namely, the mzlorimeter vessel 

or celI, within which the process of interest ozcurs, and the calorinetcr surroundings 

or jacket (see Fig- 1). The ratio of the heat capacity (C) of the caorimeter cell and 

Fig_ I_ One-body model of calorimeter where h is the heat conduction usstat be?ween caIorimeter 
ceLl and jacket 

contents to the heat conduction constant (lz) between jacket and cell defines the time 
constant (7) of the caiorimetcr. Heat conduction calorimeters are characterized by a 
smah time constant unlike adiabatic and isoperibol 4orimeters which geaerally 

have larger time constants, aithough the distinction between these various types of 

calorimeters must a.Iso depend on the mode of operation of the instrum__rt and on 

which physical variables are kept constant”. The theory and practice of adiabatic 

and isoperibol calorimetry has been discussed eIsewhcre’* 1 3* 14, ?nd in this paper we 

shah be concerned only with heat conduction calorimeters. Lzter, we shall return to 

a discussion of the importance of the time constant. 

For purposes of *this paper, we define a scanning calorimeter as a heat conduc- 

tic-m caIorimeter, q-here the temperature of the jacket is changing with time. The 

tetlpMature of the calorimeter ceI1 may then either lag behind the temperature of the 

jacket or may be made very nearly equal lo it by means of an dectricai heater con- 

tamed within the ceII_ Since accurate calorime:ric measurements require an accounting 

for heat exchange between calorimeter cell and jacket, it is required that this heat 

exchange be known or caIcuIabIe_ For conduction* or for rxiiation heat exchange 

2cross smalI temperature differences one can write 

dQ/dZ = h(Oj-OJ = hA0 (0 

l seC assumption 3. se&x. IIL 
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where dQ/dr is the rate of heat exchange between calorimeter and jacket, h is the heat 
conduction constant, and ej and 8, are the temperatures of jacket and calorimeter 
cell, respectively. 

There are several possible arrangements and modes of operation of scanning 
calorimeters. For exampie, one may measure the temperature difference between the 
jacket and the calorimeter cell (e.g. by means of thermocouples), or one may just 
measure the temperature of the cell itself, knowing the temperature of the jacket as 
a function of time. One may have single cell or double ceil operation (differenrial 
arrangement). One may also apply eIectrica1 heating to a cell to compensate for 
endothermic effects. A summary of several possibte types of scanning calorimeters 
is given in Table I. 

TABLE 1 

POSSIBLE ARRANGEMENTS AND MODES OF SCANNING CALORIMETERS 

I. SingIe ceil 

A. Measure (8,-k+) and 6, as functions of time_ 
1. No electrical compensation 
2. El&& ccmpensation 

B. Measure 0, and SJ as functions of time, 
I. No ekctrical compensation 
2. Ekctrical compensation 

II. Double ceP 
A. Measure [(f3,-@3 -(OJ-S~)I and 6, as functions of time. 

1. No ekctrica1 compensation 
2 Ekctrical compensation 

B. Measure (& - 03 and 0, as fu.-ctions of time. 
I. No electrical compensation 
2. ElectricaS compensation 

= 0, and 0; are the temperatures of the working and auxiliary c&s, respectiirely 

III. A %MPE O?JJ+CELL CASE 

We shall proceed by working out a simple case-one in which the calorimeter 
consists of a single cell in which one measures the temperature difference between 
the jacket and the cell as well as the temperature of the jacket, both as functions of 
time. We shall consider the cell to contain a known mass of a -abstance that melts at 
temperature 6,. The energy of fusion of this mass of material at this temperature iS 

given by AU,,,. 
In general, the heat capacity of the solid (Cd will not be equal to the heat 

capacity of the liquid (C& No electrical energy is applied to the cell during the experi- 
ment, We shah consider the cell to be a closed system made of rigid walls so that 
there can be no exchange of matter with the surroundings or work done by the system 
on the surroundings. The object of the experiment is to determine the energy of fusion 
at the melting temperature. 
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We state the foIIowing assumptions: 

The substance is pure and melts at a constant temperature and has negligibIe 

vapor pressure. 

The heat -pacify of tte cell (C,) and the heat capacities of the liquid and solid 

are constants, independent of temperature. 

The heat exchange between cet! XC’ *acket is given by eqn. (1) where the heat J 

conduction constant (h) is known and is independent of temperature over the 

range of the experiment_ Implicit in eqn (I) is the assumption that the heat 

capacity of any material between jacket and calorimeter cell is negbgible. 

The temperature cf the jacket is uniform at all times and changes linearly with 

time 

Oj = ej(O)t~ (21 

where Oj (0) is the value of Oj at time (t) equal to zero, and z is the programming 

or scanning rate of the jacket. 
The temperature of the cell and its contents is uniform at all times_* 

After this simpIe case has been worked out, the other possible arrangement and modes 

will be discussed_ Finally, some of the possible consequences due to the above assump- 

tions not hoIding wiii be considered. 

Fia. 2, Temperature of calorimetw jacket (02 and caIorimeter cell (@a as functions of time for a 
meking promr. 0, is the melting trniperature: CS> C,_ 

In Figs. 2 and 3 are shown quahtative pictures of the data one would expect to 

obtain for our simple case (IA1 in Table 1). Initially, the jacket and the cei with its 
contents are at the same temperature, 6j(O) = 6,(O) at t = 0. The temperature of the 

7he last three statements are one-body model assumptions I*. Clearly. it is impossibIe to build a 
perfect one-boJy caIorimerer_ 



Fig. 3. Temperature difference (Af3) between calorimeter jacket and ceil as a function of time during a 
melting experiment. Ael and A& are the steady state temperature differences prior to and after 
melting, respectiveIy; 6 = A& -A@, _ 

jacket is then increased at the rate Q, according to eqn. (2) Since the heat ffowing 

from the jacket to the cell is given by eqn. (I) we can write 

C, (daJdt) = h(ej-6,) = hA9 (-3) 

where C, is the heat capacity of the cell and the solid sam$e (the initia: system). 

We solve eqn. (3) for 0, and A6 to obtain 

0, G = (8j (0) + Ctt) + h (emHicl - 1) 

A8= ? (1 _e-WG) 

(4) 

(5) 

After the exponentials in eqns. (4) and (5) have died out for large t, we f?nd that 

dOJdr becomes equal to a and that 

At? = AOi = aC,/h = a? (6) 

The time during which A8, is a constant constitutes the fore period baseline. At 

temperature 0,) corresponding to time tI in Figs. 2 and 3, the sample will start to 
melt and the cell and its contents will remain at a constant temperature until the 
mehing process is compiete. Then, the temperature of the cell wilf catch up rapidly 

with the temperature of the jacket until a new after period baseline is achieved where, 

by reasoning similar to that given above, one can show that 
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where Cz is the heat capacity of the cell and the liquid sample (the final system). 

A& corresponds, like AO, , to the temperature difference between the jacket and the 

cell after the exponential term has become insignifIcant. In Figs. 2 and 3 the baseline 
shift due to the chanse in heat capacity has been exaggerated. The magnitude of the 

baseline shift is defined by the quantity 6, where 

6=AO,- AS, = ; (C, - C,). (8) 

At time c, in Figs_ 2 and 3 our calorimeter cell contains the pure solid at 

temperature (I,, = 0,_ This can be expressed as 

6,, = e, = Oj(O)+Zt,-A0i (9) 

By time tz, the meltin_e process has been completed and we now have cell and liquid 

sample at temperature 8=?, which is given by 

e,, = Sj(O)i ~t,-A6, (10) 

In eqns (9) and (IO), 6,, and 0,_ T are the temperatures of the cell at times I, and tz, 

respecti\-ely, while AO, and A& are the temperature differences between jacket and 

cell at these respective times From the First Law of Thermodynamics, the total 

quantity of heat (Q) that has entered the sample cell, given by eqn. (11) 

k= 
Q = Iz 

1 
AOdt (II) 

rr 

is also equal to the chanse in internal ener_ey for the process 

cell(at O,,) f soIid(at O,,) + celI(at 6& -f-liquid(at O&_ (A) 

But (A) may be treated as the sum of the two step process 

solid(at O,,) --, liquid(at O,,) (B) 

ceIl(at O,,) tliquid(at O,,) --, cell(at 6& f liquid(at O&. (Cl 

One may then deduce that 

.-1x 
Q=h 

I 
AOdt = A&,/i- (Cr+CJ(~,2--0,,)- 

c ra 
(12) 

Eliminating the last term in eqn. (12) by means of eqns. (7), (9), (lo), and the previous 

d&&ion of the term & we obtain an expression for AU,,, in terms of experimentally 

measureubie quantities, namely 

-Q 

A%em = h [J Aedt-A9,(tz-tr) -i- 
1; 

(13) 
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Equation (13) is a “prescription ” for determining the energy of fusion of a 
pure compound for our simple case and within the context of the assumptions given 
above. Geometrically, the first two terms in the brackets of eqn_ (13) represent the 
area abc minus the area of the triangle acd shown in Fig. 4. To this resultant area 
must be added the term (AB,/cz)& The sum of these terms is then muhiplied by the 
heat conduction constant h. 

b 

Fig. 4. Temperature difference between jacket and vessel as a function of time during a melting 
process using the singIe-cell mode of operation. The relevant areas that must be measured to obtain 
the energy of fusion (AC&d at the melting point are indicated on the figure. 
A&.,_ = h(area-abc-area-auf-k (Af?,/z)a). 

We note that the choice of ?he time t, is immaterial provided that it is any 
time on the new basehne established after completion of the mciting- However, the 
choice of the time fl is seen to be of consequence. 

Physically, the last term in eqn. (13) multiplied by h is equal to (Cl+ C,) b and 
corresponds to the quantity of heat required to raise the temperature of the cell and 
liquid sample over the temperature interval 6. 

The assigned temperature of transition is 8,, , given by eqn. (9). 
Our treatment confirms that if there is no heat capacity change on melting, 6 is 

equal to zero, and the correct area to be used in the caIcuiation is the area above the 
baseline and under the peak due to the transition. in such a case, the heat of fusion is 
independent of temperature and the choice of t, and t,. 

The extension of our treatment to the experimental situation where 0, and 6, 
are measured as functions of time (case IBl in Table 1) is trivial in that if one knows 
both these quantities as functions of time, this information can be combined to yield 
A0 as a function of time, namely, 

A6 = ej(O)+at-f(t) (15) 
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The treatment of these daw. is then identical to that given in Section III above. If 
e!ectrica! compensation is w.ed (case IB2) the treatment of the data would be as given 
in Section IV. 

TV_ CASE OF ELEClRIC_4L C0XPESS~TIOS 

Case IA2 in TabIe I differs from the case just considered in that now electrical 
power, P(r). is being provided by a heater contained within the ce!I. We will assume 
that the power is known accurate!y as a function of time and that proper accounting 
h3s been nlade for power generated in the heater leads”_ If eiectrica! heating is used 
only between the times t, and rI (sez Fig. 3), the ener_g of fusion will then bc given by 

Since electrical compensation is being provided, the magnitude of the r AOdr term 
. *I 

in eqn. (16) will be smtiiier than the same term in eqn. (13) where no compensation 
was provided_ The principa! advantage of electrical compensation is that electrical 
power can be measured very accurate!:{ and precise!y when proper care is taken. 

When total e!ectric3! comFnsat.on is attempted, one must demonstrate that 
the sum of the negative and positive hc3t exchange between calorimeter cell and 
jacket is neoJitib!e. CI 

\r. DOLVLE CELL OPERATIOS 

In double c-e!!, or differential operation, we have a ‘ctwin” cell contained within 
the jacket. Althou& the heat capacity (cl) and the heat conduction constant (h’) of 
the twin are approximately equal to that of the working ceil, it does not contain a 
materi3! that wi!! underso a therms! transition. It is evident that a!! of the equations 
developed earlier will 3ppIy to the twin cell. Thus, after the decay of an initial exponen- 
tial term (eqn .5), the tern_perature difference between the twin cell and jacket wi!! be 

(17) 

If one measures the quantity (AO- AO’), ,x.-espondinz to case HAI in Table I, one 
would obtain data of the sort shown in Fig. 5. The ener,oy of fusion at temperature 
19~~ would be @ven by eqn. (13) which is (by reference to Figs. 4 and 5) equiva!ent to 

AUfs_ = h - area-acd +- (1s) 

The quantit>- 6 and the areas czbc and acd are known from the data in Fig. 5, but the 
value of AO, is pot. We, therefore, conclude that double cell operation is feasible 
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provided that the qaantity A& (or AO,) is also measured, as in the single-cell mode 
of operation_ 

Fig. 5. Plot of (AQ-A&). the differential temperature difference, as a function of time for a melting 
process utilizing differential operation. In this experiment, the quantity 6 and the areas abc and acd 

are measured, but the value of A& must be obtairwd by a separate measurement. 

If electrical compensation is applied to the working cell, eqn_ (16) would then 
be applicable. Again, the quantity AO, must be measured. 

If the difference in temperature of the individual cells O,- O:, is measured 
(cases IIBl and IIBZ), this is equivalent to measuring the quantity A0 - AO’ under our 
assumption of uniform jacket temperature. The treatment of the data would then 
follow the prescription given above. 

The only reason for using differential operatio:l would be to cancel out curvature 
in the baseline due to non-linear temperature programming of the jacket. Otherwise, 
differential operation should not be necessary_ 

VI_ THJZ RJXL SC;\EiMNG CALORI_ME-IER 

The treatment given above is based upon the assumptions stated in Section III. 
The real calorimeter, however, presents a much more complicated and difficult 
problem, and it is not the purpose of this paper to present a complete and rigorous 
solution for this problem. Nevertheless, we shall discuss in a qualitative way some of 
the consequences due to departures from the assumptions made earlier. 

If the compound contained within the calorimeter has a vapor pressure, a 
correction to the measured ener_ey of fusion can be applied using the procedure derived 
by Hoge16. A correction of this sort becomes necessary only in the case of highly 
accurate work or when the compound has a large vapor pressure. High accuracy work 
would also necessitate a correction for any impurities contained within the sample. 

There are several effects that can make eqn. (3) non-linear_ These effects are 
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due to temperature depenzlencies of (1) the heat capacity of the calorimeter cell, (2) 
the heat conduction constant (h), and (3) the heat capacity of the sample itself. It is 
our belief that there are experimental remedies available t,lat will help to minimize 
these diEcuIties although not entircIy eliminate them. For example, if one provides 
electrical compensation during a mdtin,o experiment (see Section IV), the correction 
fcr heat exchange to the jacket is smaller and hence any temperature dependence of 
h- becomes Iess impwtant. it should also be possible to insure that the heat capacity of 
the caIorimeter ceII is reasonably constant over a small temperature range. Differentiai 
operation and a slow Fanning rate should also help to minimize the above non-linear 
effects as well as ncs-linear temperature promming of the jacket. We note that if a 
transition occurs o-_er a wide temperature range, as is frequently the case with protein 
denaturations3, a vtry slow scanning rate may not be feasible. 

If the equation for heat exchange between cell and jacket were by some chance 
different than eqn (I), one wouId then have to modify alI of the equations in the 
subsequent treatment. The diEicuIties and dangers inherent in a procedure of this sort 
can be avoided experirientaliy by (I) design of a caIorimeter in such a way that most 
of the heat eschange I; by conduction and (2) operation of the instrument in such a 
way that the temperature difSerence between jacket and cell is never excessively large_ 

As stated earlier, one cannot build a perfect one-body calorimeter. Gradients 
vrili aIways e_xist on the jacket and on and within the caiorimeter ce:i_ These gradients 
can be minim&d, how :ver, by means of vanes and by the use of materials having a 
high thermal diffusivity_ We also note that aII calorimetric measurements are com- 
parison measurements ‘between a known and an unknown quantity of heat and that 
meaningful caIorimecric mmurements can be made if the gradients on the surface 
of the calorimeter cell arc the same for both the known and unknown heats. A test 
that has been proposed” to check the accuracy of calorimetric measurements is that 
of heater placement_ To perform this test, one moves the heater about within the 
caIorimeter CZII and determines the effects of these operations on the experimental 
resuits. In an accurate caIorimeter, heater placement should make little or no 
difference- 

.4n additional effect of Iags in the calorimeter would be to distort the shape of 
the scanning curve from that predicted by the one-body model. Thus, one should 
expect to lfnd a rounded curve rather than a curve of the type depicted in Fig_ 4 
which demonstrates abrupt changes corresponding to the onset and end of melting. 

Equation (13) was derived, in part, in order to be able to account for the 
baseline shift encountered in scarming caIorimetry_ ReoentIy, Guttman and F!ynul*, 
have developed a treatment s~ecificaIiy for the type of scanning calorimeter developed 
by Watson et 41. ‘_ It is hoped that as scanning calorimetry becomes more accurate 
treatments of this sort wilI come into wider usage. 

Earlier in this paper it was stated that the time constant was an important 
characteristic of the caIorimeter_ It is our contention that, for heat conduction calori- 
metry, it is desirable to have a smalI time constant. The reason for this lies in the 
fact that the experiment is not con pleted untiI the curve has reached the after-period 
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baseline. For example, if we have a calorimeter with a time constant of 100 seconds, 
a peak on its decay to the baseline will fall to half of its value in 69 seconds. If we 
consider the curve to have returned to its baseline when it has fallen to one one- 
thousandth oc its maximum value, we calculate that we must wait approximately ten 
half-times fol this to happen, which in the case of our example corresponds to 690 
seconds. We 14 that a time constant of about this order of magnitude probably 
con&&es a Izactical upper limit for scanning calorimetry. If it is exceeded, not only 
does one Iose the advantage of speed, but if one wishes to measure small heat effects, 
one must contend with the variety of thermal disturbances that can occur during this 
Iong wait for a return to baseline. 
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